Résumé : Les processus de fragmentation sont des modèles aléatoires pour décrire l'évolution d'objets (particules, masses) sujets à des fragmentations successives au cours du temps. L'étude de tels modèles remonte à Kolmogorov, en 1941, et ils ont depuis fait l'objet de nombreuses recherches. Ceci s'explique à la fois par de multiples motivations (le champs d'applications est vaste : biologie et génétique des populations, formation de planètes, polymérisation, aérosols, industrie minière, informatique, etc.) et par la mise en place de modèles mathématiques riches et liés à d'autres domaines bien développés en Probabilités, comme les marches aléatoires branchantes, les processus de Lévy et les arbres aléatoires. L'objet de ce mini-cours est de présenter les processus de fragmentation auto-similaires, tels qu'introduits par Bertoin au début des années 2000s. Ce sont des processus markoviens, dont la dynamique est caractérisée par une propriété de branchement (différents objets évoluent indépendamment) et une propriété d'auto-similarité (un objet se fragmente à un taux proportionnel à une certaine puissance fixée de sa masse). Nous discuterons la construction de ces processus (qui incluent des modèles avec fragmentations spontanées, plus délicats à construire) et ferons un tour d'horizon de leurs principales propriétés.
Enregistré pendant les "Journées ALEA" le 10 mars 2016 au Centre International de Rencontres Mathématiques (Marseille, France)
Réalisation: Guillaume Hennenfent
Find this video and other talks given by worldwide mathematicians on CIRM's Audiovisual Mathematics Library: http://library.cirm-math.fr. And discover all its functionalities:
- Chapter markers and keywords to watch the parts of your choice in the video
- Videos enriched with abstracts, bibliographies, Mathematics Subject Classification
- Multi-criteria search by author, title, tags, mathematical area
Enregistré pendant les "Journées ALEA" le 10 mars 2016 au Centre International de Rencontres Mathématiques (Marseille, France)
Réalisation: Guillaume Hennenfent
Find this video and other talks given by worldwide mathematicians on CIRM's Audiovisual Mathematics Library: http://library.cirm-math.fr. And discover all its functionalities:
- Chapter markers and keywords to watch the parts of your choice in the video
- Videos enriched with abstracts, bibliographies, Mathematics Subject Classification
- Multi-criteria search by author, title, tags, mathematical area
Bénédicte Haas : Introduction aux processus de fragmentation 2/2 cnrs montpellier | |
2 Likes | 2 Dislikes |
402 views views | 10K followers |
Science & Technology | Upload TimePublished on 30 Mar 2016 |
Không có nhận xét nào:
Đăng nhận xét